Exact Multiplicity for Boundary Blow-up Solutions

نویسندگان

  • ZONGMING GUO
  • FENG ZHOU
چکیده

The singularly perturbed boundary blow-up problem −ε2∆u = u(u− a)(1− u) u > 0 in B, u = ∞ on ∂B is studied in the unit ball B ⊂ R (N ≥ 2), a ∈ (1/2, 1) is a constant. It is shown that there exist exactly three positive solutions for the problem and all of them are radially symmetric solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact multiplicity of boundary blow-up solutions for a bistable problem

We prove the exact multiplicity of positive boundary blow-up solutions to a semilinear elliptic equation with bistable nonlinearity for the one-dimensional case. We use time-mapping techniques to determine the exact shape of the bifurcation diagram.

متن کامل

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Blow up Points of Solution Curves for a Semilinear Problem

We study a semilinear elliptic equation with an asymptotic linear nonlinearity. Exact multiplicity of solutions are obtained under various conditions on the nonlinearity and the spectrum set. Our method combines a bifurcation approach and Leray–Schauder degree theory.

متن کامل

Remarks on large solutions of a class of semilinear elliptic equations

In this paper, we show existence, uniqueness and exact asymptotic behavior of solutions near the boundary to a class of semilinear elliptic equations −∆u = λg(u)− b(x)f(u) in Ω, where λ is a real number, b(x) > 0 in Ω and vanishes on ∂Ω. The special feature is to consider g(u) and f(u) to be regularly varying at infinity and b(x) is vanishing on the boundary with a more general rate function. T...

متن کامل

Singular solutions of perturbed logistic-type equations

We are concerned with the qualitative analysis of positive singular solutions with blow-up boundary for a class of logistic-type equations with slow diffusion and variable potential. We establish the exact blow-up rate of solutions near the boundary in terms of Karamata regular variation theory. This enables us to deduce the uniqueness of the singular solution. 2011 Elsevier Inc. All rights res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006